Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
2.
Emerg Infect Dis ; 29(4): 862-865, 2023 04.
Article in English | MEDLINE | ID: covidwho-2248116

ABSTRACT

To assess dynamics of SARS-CoV-2 in Greater Accra Region, Ghana, we analyzed SARS-CoV-2 genomic sequences from persons in the community and returning from international travel. The Accra Metropolitan District was a major origin of virus spread to other districts and should be a primary focus for interventions against future infectious disease outbreaks.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , COVID-19/epidemiology , Ghana/epidemiology , Biological Evolution , Disease Outbreaks
3.
Ghana Med J ; 55(2 Suppl): 51-55, 2021 Jun.
Article in English | MEDLINE | ID: covidwho-1502653

ABSTRACT

The COVID-19 pandemic caused by SARS-CoV-2 is an important subject for global health. Ghana experienced low-moderate transmission of the disease when the first case was detected in March 12, 2020 until the middle of July when the number of cases begun to drop. By August 24, 2020, the country's total number of confirmed cases stood at 43,622, with 263 deaths. By the same time, the Noguchi Memorial Institute for Medical Research (NMIMR) of the University of Ghana, the primary testing centre for COVID-19, had tested 285,501 with 28,878 confirmed cases. Due to database gaps, there were initial challenges with timely reporting and feedback to stakeholders during the peak surveillance period. The gaps resulted from mismatches between samples and their accompanying case investigation forms, samples without case investigation forms and vice versa, huge data entry requirements, and delayed test results. However, a revamp in data management procedures, and systems helped to improve the turnaround time for reporting results to all interested parties and partners. Additionally, inconsistencies such as multiple entries and discrepant patient-sample information were resolved by introducing a barcoding electronic capture system. Here, we describe the main challenges with COVID-19 data management and analysis in the laboratory and recommend measures for improvement. FUNDING: The work was supported by the Government of Ghana.


Subject(s)
COVID-19 , COVID-19/epidemiology , Data Management , Disease Outbreaks , Ghana/epidemiology , Humans , Laboratories , Pandemics , SARS-CoV-2
4.
Ghana Med J ; 55(2 Suppl): 48-50, 2021 Jun.
Article in English | MEDLINE | ID: covidwho-1502652

ABSTRACT

OBJECTIVES: To determine the prevalence of SARS-CoV-2 detection among international travellers to Ghana during mandatory quarantine. DESIGN: A retrospective cross-sectional study. SETTING: Air travellers to Ghana on 21st and 22nd March 2020. PARTICIPANTS: On 21st and 22nd March 2020, a total of 1,030 returning international travellers were mandatorily quarantined in 15 different hotels in Accra and tested for SARS-CoV-2. All of these persons were included in the study. MAIN OUTCOME MEASURE: Positivity for SARS-CoV-2 by polymerase chain reaction. RESULTS: The initial testing at the beginning of quarantine found 79 (7.7%) individuals to be positive for SARS-CoV-2. In the exit screening after 12 to 13 days of quarantine, it was discovered that 26 of those who tested negative for SARS-CoV-2 in the initial screening subsequently tested positive. CONCLUSIONS: Ghana likely averted an early community spread of COVID-19 through the proactive approach to quarantine international travellers during the early phase of the pandemic. FUNDING: None.


Subject(s)
COVID-19 , Quarantine , COVID-19/diagnosis , COVID-19/epidemiology , COVID-19/prevention & control , Cross-Sectional Studies , Ghana/epidemiology , Humans , Retrospective Studies , SARS-CoV-2
5.
Infect Dis Model ; 6: 381-397, 2021.
Article in English | MEDLINE | ID: covidwho-1056675

ABSTRACT

The raging COVID-19 pandemic is arguably the most important threat to global health presently. Although there Although there is currently a a a vaccine, preventive measures have been proposed to reduce the spread of infection but the efficacy of these interventions, and their likely impact on the number of COVID-19 infections is unknown. In this study, we proposed the SEIQHRS model (susceptible-exposed-infectious-quarantine-hospitalized-recovered-susceptible) model that predicts the trajectory of the epidemic to help plan an effective control strategy for COVID-19 in Ghana. We provided a short-term forecast of the early phase of the epidemic trajectory in Ghana using the generalized growth model. We estimated the effective basic Reproductive number Re in real-time using three different estimation procedures and simulated worse case epidemic scenarios and the impact of integrated individual and government interventions on the epidemic in the long term using compartmental models. The maximum likelihood estimates of Re and the corresponding 95% confidence interval was 2.04 [95% CI: 1.82-2.27; 12th March-7th April 2020]. The Re estimate using the exponential growth method was 2.11 [95% CI: 2.00-2.24] within the same period. The Re estimate using time-dependent (TD) method showed a gradual decline of the Effective Reproductive Number since March 12, 2020 when the first 2 index cases were recorded but the rate of transmission remains high (TD: Re = 2.52; 95% CI: [1.87-3.49]). The current estimate of Re based on the TD method is 1.74 [95% CI: 1.41-2.10; (13th May 2020)] but with comprehensive integrated government and individual level interventions, the Re could reduce to 0.5 which is an indication of the epidemic dying out in the general population. Our results showed that enhanced government and individual-level interventions and the intensity of media coverage could have a substantial effect on suppressing transmission of new COVID-19 cases and reduced death rates in Ghana until such a time that a potent vaccine or drug is discovered.

6.
Exp Biol Med (Maywood) ; 246(8): 960-970, 2021 04.
Article in English | MEDLINE | ID: covidwho-978882

ABSTRACT

The confirmed case fatality rate for the coronavirus disease 2019 (COVID-19) in Ghana has dropped from a peak of 2% in March to be consistently below 1% since May 2020. Globally, case fatality rates have been linked to the strains/clades of circulating severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) within a specific country. Here we present 46 whole genomes of SARS-CoV-2 circulating in Ghana, from two separate sequencing batches: 15 isolates from the early epidemic (March 12-April 1 2020) and 31 from later time-points ( 25-27 May 2020). Sequencing was carried out on an Illumina MiSeq system following an amplicon-based enrichment for SARS-CoV-2 cDNA. After genome assembly and quality control processes, phylogenetic analysis showed that the first batch of 15 genomes clustered into five clades: 19A, 19B, 20A, 20B, and 20C, whereas the second batch of 31 genomes clustered to only three clades 19B, 20A, and 20B. The imported cases (6/46) mapped to circulating viruses in their countries of origin, namely, India, Hungary, Norway, the United Kingdom, and the United States of America. All genomes mapped to the original Wuhan strain with high similarity (99.5-99.8%). All imported strains mapped to the European superclade A, whereas 5/9 locally infected individuals harbored the B4 clade, from the East Asian superclade B. Ghana appears to have 19B and 20B as the two largest circulating clades based on our sequence analyses. In line with global reports, the D614G linked viruses seem to be predominating. Comparison of Ghanaian SARS-CoV-2 genomes with global genomes indicates that Ghanaian strains have not diverged significantly from circulating strains commonly imported into Africa. The low level of diversity in our genomes may indicate lower levels of transmission, even for D614G viruses, which is consistent with the relatively low levels of infection reported in Ghana.


Subject(s)
Evolution, Molecular , Genome, Viral , Phylogeny , SARS-CoV-2/genetics , COVID-19/epidemiology , Ghana/epidemiology , Humans , SARS-CoV-2/pathogenicity
SELECTION OF CITATIONS
SEARCH DETAIL